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Abstract
Two functions for calculating the width of the output angular power distribution are tested for
light launched centrally along the axis of a step-index plastic optical fiber. It is found that the
more recent of the two agrees better with experimental measurements. The other function
(Gloge’s) underestimates the output width for longer fiber lengths, which is attributed to it not
accounting for an appropriate boundary condition at the critical propagation angle.
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1. Introduction

Transmission characteristics of step-index (SI) optical fibers
depend strongly upon the differential mode attenuation and
the rate of mode coupling. The latter represents power
transfer from lower to higher-order modes caused by fiber
impurities and inhomogeneities introduced during the fiber
manufacturing process (such as microscopic bends, irregularity
of the core–cladding boundary and refractive index distribution
fluctuations). In the absence of these intrinsic perturbation
effects (an idealized situation), light launched at a specific
(non-zero) angle θ with respect to the fiber axis could be
imaged into a thin ring by the far-field output of the fiber end.
The ring diameter corresponds to the said launch angle θ . Due
to inevitable mode coupling in real situations, the boundaries
of such a ring blur for longer fibers. This fussiness increases
with fiber length until it eventually evolves into a disc for fibers
longer than the ‘coupling length’ Lc. The ‘equilibrium mode
distribution’ (EMD) exists beyond the coupling length Lc of

5 Address for correspondence: Faculty of Science, R Domanovića 12,
34000 Kragujevac, Serbia.

the fiber. It is characterized by the absence of rings regardless
of the launch conditions, even though the disc pattern may
have different light distributions across it depending on the
launch conditions. EMD indicates a substantially complete
mode coupling and is of critical importance when measuring
characteristics of multimode optical fibers (linear attenuation,
bandwidth, etc). Indeed, measurement of these characteristics
would only be considered as meaningful if performed at the
EMD condition when it is possible to assign to a fiber a unique
value of loss per unit length [1].

By further increasing the fiber length to zs (zs > Lc),
all individual disc patterns corresponding to different launch
angles take the same light distribution and the ‘steady state
distribution’ (SSD) is achieved. SSD indicates the completion
of the mode coupling process and the independence of the
output light distribution from launch conditions.

For light launched centrally along the axis (θ = 0), a
point/disc radiation pattern is formed at the output fiber end.
This disc broadens with fiber length as more of the higher-order
modes are excited by the coupling which is more pronounced
in longer fibers. Because the excitation of higher-order modes
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influences transmission characteristics of optical fibers, it is of
interest for one to be able to predict the width of the output
angular power distribution at the end of the fiber up to the fiber
length zs where steady state distribution is achieved.

Said in other words, fiber imperfections cause the energy
packets to randomly switch modes back and forth and the
modes are no longer independent. While this degrades the
beam quality, its positive aspect is that it tends to average
the propagation velocity for different modes, thus reducing the
broadening of transmitted signal pulses. This broadening is a
linear function of fiber length z before the EMD condition (z <

Lc), but only a square-root function thereafter. Consequently,
fiber bandwidth for longer fibers (z > Lc) drops as 1/z1/2,
which is an improvement over the more rapid drop of 1/z for
z � Lc [2, 7].

Output angular power distribution in the near-and far-
fields of an optical fiber end has been studied extensively.
Work has been reported using geometric optics (ray
approximation) to investigate mode coupling and predict
output-field patterns [2, 3]. By employing the power flow
equation [4–9] as well as the Fokker–Planck and Langevin
equations [10], these patterns have been predicted as a function
of the launch conditions and fiber length. We recently proposed
a method for calculating the width of the output angular power
distribution in step-index multimode optical fibers for light
launched centrally along the fiber axis [11]. This method is
now verified specifically for plastic optical fibers (POFs) by
reference to published experimental data by Mateo et al [12]
and our experimental data from the same experiment. It is also
compared to Gloge’s analytical solution [5].

2. Calculation of the width of the output angular
power distribution

Assuming that mode coupling in multimode optical fibers
occurs predominantly between adjacent modes, Gloge has
derived the time-independent power flow equation in the
following form [5]:

∂ P(θ, z)

∂z
= −Aθ2 P(θ, z)+ D

θ

∂ P(θ, z)

∂θ
+ D

∂2 P(θ, z)

∂θ2
(1)

where P(θ, z) is the power distribution in the fiber, θ is
the propagation angle with respect to the core axis, z is the
coordinate along that axis referenced to the input fiber end,
D = d0(λ/4an)2, λ is the free-space wavelength, c is velocity
of light in vacuum, a and n are core radius and refractive index,
respectively, d0 is the zero-order term of the expression for the
coupling coefficient d(θ) = d0 + α(θ)θ2 + · · · and A is the
second-order multiplicative factor in the series expansion of the
power loss coefficient α(θ) due to absorption and scattering:
α(θ) = α0 + Aθ2 + · · ·. The tacit assumption here that the
coupling coefficient d(θ) is constant (equal to d0) has been
made routinely in the absence of reliable estimates of other
terms in the expansion series of d(θ) [4, 11, 13, 14].

With θc denoting the critical angle of the fiber, the
boundary conditions for (1) are P(θc, z) = 0 and D·∂ P/∂θ =
0 at θ = 0. The condition P(θc, z) = 0 implies that
modes with infinitely high loss do not carry power. Condition

D·∂ P/∂θ = 0 at θ = 0 indicates that the coupling is limited
to modes propagating with θ > 0.

In the case of a Gaussian input beam distribution launched
along the fiber axis:

Pin = P0 exp

[
− θ2

�2
0

]
(2)

where �0 = √
2σ0 is the width of the Gaussian launch beam

distribution (σ0 is the standard deviation of the launch beam
distribution).

Neglecting the boundary condition P(θc, z) = 0, the
analytical solution of equation (1) is [5]

P(θ, z) = P0�
2
0

�2∞ sinh γ∞z + �2
0 cosh γ∞z

exp

[
− θ2

�2(z)

]
(3)

where �(z) = √
2σ(z) is the width of the Gaussian angular

power distribution at the end of the fiber length z, �∞ =
(4D/A)1/4 is angular width of the steady state angular power
distribution and γ∞ = (4D A)1/2 is the overall loss coefficient.
Angular width of the output angular power distribution at the
end of the fiber length z can be obtained from [5]

�2(z) = �2
∞

�2
0 + �2∞ tanh γ∞z

�2∞ + �2
0 tanh γ∞z

. (4)

Gloge has shown that, if the measured width �(z) is small
compared to the steady state width �∞, equation (4) can be
approximated as

�2(z) = �2
0 + �2

∞γ∞z, (5)

i.e.
�2(z) = �2

0 + 4Dz. (6)

Since �0 = √
2σ0 and �(z) = √

2σ(z), equation (6) can be
written in the form:

σ 2(z) = σ 2
0 + 2Dz. (7)

By independent calculations, in our previous work [11] we
have shown that the variance of the Gaussian angular power
distribution at the end of the fiber length z is given in the form
of equation (7). Namely, except near cutoff, Aθ2 need not be
accounted for when solving (1) for mode coupling, and the first
term on the right-hand side can be omitted. Additionally, when
the launch distribution at the input end of the fiber is centered
at θ0 = 0, due to the boundary condition D·∂ P/∂θ = 0 at
θ = 0, equation (1) further reduces to [11]

∂ P(θ, z)

∂z
= D

∂2 P(θ, z)

∂θ2
. (8)

With distance from the input fiber end, the peak of the
power distribution remains at zero angle but the width of the
distribution increases. If one thinks of P(θ, z) as a probability
distribution, equation (8) can then be seen as the special
Fokker–Planck equation with constant diffusion coefficient
D [11, 15]. The solution of equation (8) is [15]

P(θ, z) = 1√
2πσ(z)

exp

[
− θ2

2σ 2(z)

]
. (9)
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Figure 1. Standard deviation of the output angular power distribution
as a function of fiber length in GH fiber calculated by Gloge’s
function (4) (solid line) and by our recently proposed function (10)
(dashed line). Filled squares represent experimental data.

The variance σ 2(z) of the output angular power distribution (9)
for the fiber length z can be calculated as [15]

σ 2(z) = σ 2
0 + 2Dz (10)

which is of the same form as equation (7). In our previous
work [11, 16, 17] we have shown that equation (10) can be
employed for step-index plastic and glass optical fibers, both at
short and long fiber lengths. Because equation (10) is a newer
alternative to equation (4), the two are compared in the next
paragraph.

One should mention here that the coefficient D is
assumed to be constant in both methods [5, 11]. The
coefficient D was assumed constant by many other authors as
well [1, 5–7, 12, 13]. In fact, this assumption dominates in
the literature and has been shown to give excellent agreement
with experimental results (e.g. [8, 10, 11, 13, 14, 16–19]). On
the other hand, Mateo et al [12] did model the mode coupling
process with D a function of θ and they obtained the same
widths of the output angular power distribution as with the θ -
independent D.

3. Comparison of methods

To facilitate the comparison of results by equations (4) [5]
and (10) [11], we have applied them both on the same
Eska™ Premier GH4001 (GH) step-index optical fiber (by
Mitsubishi) and PGU-FB1000 (PGU) step-index optical fiber
(from Toray), which are the fibers used in an earlier
experiment [12]. These fibers have core diameter d =
1 mm, numerical aperture NA = 0.5 (corresponding to inner
critical angle of θc = 19.5◦) and the nominal attenuation
is 0.15 dB m−1. In modeling mode coupling by (4), Mateo
et al [12] used the value of D = 1.171 × 10−4 rad2 m−1

and D = 2.271 × 10−4 rad2 m−1 for the coupling coefficient
of the GH and PGU fiber, respectively. We adopt these
values for this quantity that was assumed constant by many
authors [1, 5–7, 12, 13]. The value of A = 0.4025 rad−2 m−1

for the GH fiber [18] and A = 0.8054 rad−2 m−1 for the PGU
fiber we also adopt in this work.

Figure 2. Standard deviation of the output angular power distribution
as a function of fiber length in PGU fiber calculated by Gloge’s
function (4) (solid line) and by our recently proposed function (10)
(dashed line). Filled squares represent experimental data.

Calculated by equations (4) and (10) separately, figures 1
and 2 show standard deviation of the output angular power
distribution as a function of length of the GH and PGU fibers,
respectively, for the centrally launched Gaussian beam with a
standard deviation of σ0 = 3.2◦. (Mateo et al [12] used a laser
diode with FWHM = 7.5◦ (σ0 = 3.2◦) in the parallel plane
and FWHM = 30◦ (σ0 = 12.7◦) in the perpendicular plane.)
A significant difference between the two curves in figures 1
and 2 is apparent, heightening the need for comparison of the
corresponding functions (4) and (10).

Mateo et al [12] experimentally obtained that SSD in a
GH fiber has been reached at zs = 175 m. By solving the
power flow equation (1), we have obtained that SSD is reached
at zs = 190 m while EMD is reached at Lc = 80 m. Calculated
using equation (4), the standard deviation of the output angular
power distribution for GH fiber at lengths of z = 10, 50
and 150 m is σ = 4.6◦, 7.1◦ and 8.2◦, respectively. The
corresponding values calculated using equation (10), differ:
σ = 4.6◦, 8.1◦ and 13.4◦. Respective values measured are
σ ≈ 5◦, 11◦ and 12◦ [12]. Calculated using equation (4),
the standard deviation of the output angular power distribution
for PGU fiber at lengths of z = 10, 50, 100 and 150 m are
σ = 5.1◦, 7.5◦, 7.7◦ and 7.8◦, respectively. The corresponding
values calculated using equation (10) differ: σ = 5.3◦, 10◦,
13.7◦ and 16.6◦. Respective values measured are σ ≈ 7◦,
10.1◦, 11.5◦ and 12.9◦. It appears that for short fiber lengths
(z = 10 m) when the beam width is small compared to the
steady state width, equations (4) and (10) give the same result
which is close to measured data.

On increasing fiber length, predictions by equation (10)
match the experimental measurements better than those of
equation (4). This is explained by the fact that (4) has
been derived from the analytical solution (3) that ignored the
boundary condition P(θc, z) = 0 at θ = θc. In contrast, (10)
has been derived from the solution (9) of equation (8) that
needs not account for this boundary condition [15]. The
influence of the boundary condition P(θc, z) = 0 omitted
from (10) increases with fiber length because the output
angular power distribution broadens towards θ = θc due to
mode coupling. At long fiber lengths, the width is influenced

3



J. Opt. 12 (2010) 115405 S Savović et al

Figure 3. (a) Analytically obtained normalized steady state output
angular power distribution as a solution of equation (1) at the end of
the z = 48 m long GH fiber, obtained (a) ignoring the boundary
condition P(θc, z) = 0 and (b) including this boundary
condition [19].

apparently significantly. To illustrate this, the output angular
power distribution is determined for the end of the z = 48 m
long GH fiber, which is the fiber investigated earlier [14, 19].
Two analytical solutions of (1) (the normalized steady state
output angular power distribution) are shown in figures 3(a)
and (b). The one in figure 3(a) ignores the boundary condition
P(θc, z) = 0, and the one in figure 3(b) includes it. It can be
observed that by taking into account the boundary condition
P(θc, z) = 0, a wider distribution is obtained (σ = 16◦)
compared to the case when this boundary condition is ignored
(σ = 13◦).

For parametric coefficients D and σ0 in figures 4 and 5
(respectively), the influence of these parameters is shown in the
variation of the width of the output angular power distribution
with fiber length. A significant influence of the coupling
coefficient D is apparent in figure 4, whereas that of the launch
condition σ0 diminishes with distance from the input fiber end
(figure 5) and does not modify the shape of the curves for σ(z).

4. Conclusion

We have tested two previously proposed functions for
calculating the width of the output angular power distribution
in two SI POFs. We found that the more recently proposed

Figure 4. Evolution of the width of the output angular power
distribution with fiber length z for various values of the diffusion
coefficient D as a parameter.

Figure 5. Evolution of the width of the output angular power
distribution with fiber length z for various values of the width σ0 of
the launched beam as parameter.

one matches better the experimental measurements. The
other function underestimates the output width at longer
fiber lengths, which is attributed to it not accounting for an
appropriate boundary condition at θ = θc (which is close to the
critical angle of propagation). However, this missing boundary
condition is irrelevant for short fibers because the launch is not
normally at the critical angle θ = θc and because not much
power could be coupled to this angle by the coupling process
that (in short fibers) is still at its very beginning. Hence, the
two functions are equally accurate for short fibers.
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